
Author’s Proof
Before checking your proof, please see the instructions below.

• Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools (Adobe
Help).
• Provide your corrections in a single PDF file or post your comments in the Production forum making sure to reference the relevant
query/line number. Upload or post all your corrections directly in the Production Forum to avoid any comments being missed.
• We do not accept corrections in the form of edited manuscripts nor via email.
• Do not provide scanned or handwritten corrections.
• Before you submit your corrections, please make sure that you have checked your proof carefully as once you approve it, you won’t be
able to make any further corrections.
• To ensure the timely publication of your article, please submit the corrections within 48 hours. After submitting, do not email or query
asking for confirmation of receipt.

Do you need help? Visit our Production Help Center for more information. If you can’t find an answer to your
question, contact your Production team directly by posting in the Production Forum.

Quick Check-List

□ Author names - Complete, accurate and consistent with your previous publications

□ Affiliations - Complete and accurate. Follow this style when applicable: Department, Institute, University, City, Country

□ Tables - Make sure our formatting style did not change the meaning/alignment of your Tables.

□ Figures - Make sure we are using the latest versions.

□ Funding and Acknowledgments - List all relevant funders and acknowledgments.

□ Conflict of Interest - Ensure any relevant conflicts are declared.

□ Supplementary files - Ensure the latest files are published and that no line numbers and tracked changes are visible.
Also, the supplementary files should be cited in the article body text.

□ Queries - Reply to all typesetters queries below

□ Content - Read all content carefully and ensure any necessary corrections are made.

https://helpx.adobe.com/acrobat/using/commenting-pdfs.html
https://helpx.adobe.com/acrobat/using/commenting-pdfs.html
https://zendesk.frontiersin.org/hc/en-us/categories/200397292-Article-Production-


Model Integration in
Computational Biology: The Role of
Reproducibility, Credibility and Utility
Jonathan Karr1, Rahuman S. Malik-Sheriff 2, James Osborne3, Gilberto Gonzalez-Parra4,
Eric Forgoston5, Ruth Bowness6, Yaling Liu7, Robin Thompson8, Winston Garira9,
Jacob Barhak10*, John Rice11, Marcella Torres12*, Hana M. Dobrovolny13, Tingting Tang14,
William Waites15,16, James A. Glazier17, James R. Faeder18 and Alexander Kulesza19

1Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States,
2EuropeanMolecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom, 3School of
Mathematics and Statistics, University of Melbourne, VIC, Parkville, Australia, 4Mathematics Department, New Mexico Tech,
Socorro, NM, United States, 5Department of Applied Mathematics and Statistics, Montclair State University, Montclair, NJ,
United States, 6Department of Mathematical Sciences, University of Bath, Bath, United Kingdom, 7Department of Mechanical
Engineering and Mechanics, Department of Bioengineering, Lehigh University, Bethlehem, PA, United States, 8Mathematics
Institute and the Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick,
Coventry, United Kingdom, 9Department of Mathematics and Applied Mathematics, Modelling Health and Environmental
Linkages Research Group, University of Venda, Limpopo, South Africa, 10Jacob Barhak Analytics, Austin, TX, United States,
11Independent RetiredWorking Group Volunteer, Virginia Beach, VA, United States, 12Department of Mathematics andComputer
Science, University of Richmond, Richmond, CA, United States, 13Department of Physics and Astronomy, Texas Christian
University, Fort Worth, TX, United States, 14Department of Mathematics and Statistics in San Diego State University (SDSU) and
SDSU Imperial Valley, Calexico, CA, United States, 15Centre for Mathematical Modelling of Infectious Diseases, London School of
Hygiene and Tropical Medicine, London, United Kingdom, 16Department of Computer and Information Sciences, University of
Strathclyde, Glasgow, Scotland, 17Biocomplexity Institute, Indiana University, Bloomington, IND, United States, 18Department of
Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States, 19Novadiscovery SA, Lyon, France

During the COVID-19 pandemic, mathematical modeling of disease transmission has
become a cornerstone of key state decisions. To advance the state-of-the-art host viral
modeling to handle future pandemics, many scientists working on related issues
assembled to discuss the topics. These discussions exposed the reproducibility crisis
that leads to inability to reuse and integrate models. This document summarizes these
discussions, presents difficulties, and mentions existing efforts towards future solutions
that will allow future model utility and integration. We argue that without addressing these
challenges, scientists will have diminished ability to build, disseminate, and implement
high-impact multi-scale modeling that is needed to understand the health crises we face.

Keywords: simulation, reproducibility, crisis, computational modeling, credibility

INTRODUCTION–THE PROMISE OF MODELING

Starting with the development of the SIR model in 1927 (Kermack et al., 1927), there has been a long
history of population-level epidemiological modeling. The idea of being able to forecast biological
phenomena computationally seemed very promising and as a result it has engaged researchers for a
long time. Within time, many promises were made in the name of modeling, and enough effort was
spent to warrant evaluating current capabilities, concepts, and hurdles.

Over the years, these studies have included the addition of population compartments, as well as
the inclusion of age structure, vaccine, and quarantine, to name just a few advancements. Other
studies have moved away from classical deterministic models to better understand the role of

Edited by:
Shayn Peirce-Cottler,

University of Virginia, United States

Reviewed by:
Giulia Russo,

University of Catania, Italy
Marissa Renardy,

Applied BioMath, United States

*Correspondence:
Jacob Barhak

jacob.barhak@gmail.com
Marcella Torres

mtorres@richmond.edu

Specialty section:
This article was submitted to

Multiscale Mechanistic Modeling,
a section of the journal

Frontiers in Systems Biology

Received: 26 November 2021
Accepted: 04 February 2022

Published: XX XX 2022

Citation:
Karr J, Malik-Sheriff RS, Osborne J,

Gonzalez-Parra G, Forgoston E,
Bowness R, Liu Y, Thompson R,

Garira W, Barhak J, Rice J, Torres M,
Dobrovolny HM, Tang T, Waites W,

Glazier JA, Faeder JR and Kulesza A
(2022) Model Integration in

Computational Biology: The Role of
Reproducibility, Credibility and Utility.

Front. Syst. Biol. 2:822606.
doi: 10.3389/fsysb.2022.822606

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Frontiers in Systems Biology | www.frontiersin.org February 2022 | Volume 2 | Article 8226061

REVIEW
published: XX XX 2022

doi: 10.3389/fsysb.2022.822606

http://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.822606&domain=pdf&date_stamp=2022-02-01
https://www.frontiersin.org/articles/10.3389/fsysb.2022.822606/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.822606/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.822606/full
http://creativecommons.org/licenses/by/4.0/
mailto:jacob.barhak@gmail.com
mailto:mtorres@richmond.edu
https://doi.org/10.3389/fsysb.2022.822606
https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.822606


stochasticity. Moreover, this wide range of epidemic models has
been used to study numerous diseases. Because of the vast
amount of knowledge that has been gained through epidemic
modeling over approximately the past 100 years, it was possible
for researchers to quickly adapt their models to make predictions
about the spread and control of the SARS-CoV-2 coronavirus.

However, unlike the population-level epidemic modeling
effort, much less is known about how viral infections spread
throughout the body, including its immune response and the
response of different organ systems. Moreover, very little is
known about the connection between infection at the
individual scale and infection at the population scale.

Some examples like (Azmy et al., 2018) and (Ackleh et al.,
2013) use bacteria or virus load as a feature parameter in partial
differential equation compartment systems, where the
progression of the disease among the population is linked to
the virus load in infectious individuals.

Within-host models can explore how the variance of biology
within the body can impact both a disease and its treatment
(Zarnitsyna et al., 2021). Such mathematical models of viruses
focusing on the in-host dynamics should be developed and
utilized to a greater extent.

Multi-scale within-host modeling is common, with scales from
the molecular and cellular levels integrated successfully with the
larger whole-organ or whole-body scales (Powathil et al., 2012;
Bowness et al., 2018), (Segovia-Juarez et al., 2004). There are
fewer models, however, that successfully combine within-host
models with population-level models. One barrier to the
development of such models is the potential to lose the
within-host granularity that is often seen when integrating to a
higher scale. Many researchers may question if these multi-scale
models truly offer new insight or if they are more informative
when analyzed independently. Such questions emphasize the
challenges of multi-scale model integration.

As we move from conceptual models (the diagrams and verbal
models of biologists) to mathematical models to computer code,
we gain in executability, but we lose shareability. Shareability
requires multiple concepts: Reusability–someone else can run the
same computer code, perhaps with different initial conditions or
parameter values; Extensibility–someone can add modules or
replace modules within the model without breaking it;
Extractability–someone can select model components and use
them, and they continue to function independently of their initial
context; Portability–the model can be reused in a different
computational instantiation from its original implementation.
In particular, the knowledge embedded in computer code is
generally stranded or lost, since you cannot easily infer the
underlying conceptual model from the mathematical model or
the mathematical model from its computer code. As a result, an
essential aspect of model development is a formal process that
begins with a detailed and complete specification of a fully
sharable conceptual model, then develops a less sharable, but
quantitative mathematical model, which is an interpretation of
the biology and physics of the conceptual model, and finally a
computer simulation, which implements the mathematical model
in the form of specific algorithms and methodologies. At each
step we need to define additional parameters and concepts.

One relatively new key concept enabling construction of
models of complex phenomena is composition (Halter et al.,
2020). Decomposition lets us break down a complex problem into
simpler problems that can be solved or simulated and
composition lets us systematically recombine these solutions
into a solution of the original problem. To accomplish this, we
need to think in terms of higher-order operations on models:
what the models are is less important than what can be done with
them. There are two kinds of composition: parallel and serial.
Parallel composition means running models concurrently. This is
useful for ensemble or consensus approaches that combine
multiple models to arrive at a best estimate. Serial
composition is when the output of one model becomes the
input of another. It is important to think about the type of the
model, what input it requires and what output it produces
because compatibility is required for serial composition. Serial
composition has been used to great effect, for example in whole
cell models. Of course, it is possible to compose these combined
models.

Combination of models can be from white box models or
black box models. Black box models do not expose much
information to the modeler, but even models that are
composed of white-box models may suffer from transparency
shortcomings due to the composition. In modular models, three
different types of submodel couplings can be found: 1) black-box
models with code-level coupling using information-hiding
interfaces, 2) white-box models with code-level coupling and
3) white-box models with biological-level coupling.

Compositionality and modeling has been extensively studied
theoretically and the primitive operations, parallel and serial
composition, explored in detail for certain classes of model
(Baez and Master, 2020; Baez et al., 2021) that appear in fields
as diverse as electronics engineering, chemistry, molecular
biology (Danos and Laneve, 2004), plant biology (Honorato-
Zimmer et al., 2018), infectious diseases (Halter et al., 2020;
Waites et al., 2021) and economic game theory (Atkey et al.,
2020). However, to address practical problems across scales,
infrastructure is required. First, it is necessary to be able to
discover models; models cannot be composed if they are
unknown or unavailable. To do this, a catalog is needed with
metadata about models and how to obtain them. We note the
existence of mature software for data catalogs that is easily
repurposed (CKAN, 2021). The models must be described
sufficiently well to know if they can be composed, annotated
with information about their input and output types. Annotations
facilitate auxiliary tasks such as searching for appropriate models
and ascertaining provenance. Finally, attention is needed to the
detail of composition of a broad class of models, recognizing that
errors introduced by (de)composition are only well-understood
for some cases (Hairer et al., 2006; Blanes et al., 2008).

With so many multiscale modeling methods that are
seemingly disjoint and mutually exclusive, recent efforts have
sought to bring some order in the discussion of multiscale models
of pandemics by providing a complete categorization of them
(Garira, 2017; Garira, 2018). These publications identified five
different categories of multiscale models of diseases that use
different integration frameworks to integrate across scales.
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While this categorization cannot be claimed to be unique, it
constitutes a good starting point, which may be found useful as a
basis for further refinement in the discourse of multiscale
modeling of pandemics. The paper (Garira, 2018) further
identified ten of the most significant challenges that stand in
the way of future advances in integration across scales in the
development of multiscale modeling of disease dynamics.
Collaborative research among scientists with different skills is
needed to fully resolve these challenges.

The recent COVID-19 pandemic has highlighted the
importance of modeling the disease and its potential
vulnerabilities for interventions. Notable examples include
(Russo et al., 2020) and (Russo et al., 2021) that develop
models for vaccines. Between-host infection simulations helped
researchers to make forecasts about the spread and potential
control of the coronavirus. These models build from a century of
work in population-level epidemiological modeling.While simple
models have been attempting to assess potential antiviral drug
combinations, very little is still known about the connection
between infection at the individual scale and infection at the
population scale (Dodds et al., 2021).

Indeed during the COVID-19 pandemic, many scientists
working on related issues assembled under the umbrella of the
Multiscale Modeling and Viral Pandemics Working Group
(Multiscale Modeling and Viral Pandemics, 2021). This group
is part of the MultiScale Modeling (MSM) Consortium hosted by
the Interagency Modeling and Analysis Group (IMAG)
(Interagency Modeling and Analysis Group, 2021). The
discussions about modeling and its promise collected many
ideas that were represented there, many times representing
more than one opinion, creating a choir of voices. Among
those voices, the group located many hurdles that might
explain why the promise of modeling is not yet fully
fulfilled–those are discussed below and organized considering
the workflow of reproducing, gaining credibility, reuse, and
integration.

FROMREPRODUCIBILITY TOCREDIBILITY
TO UTILITY TO INTEGRATION

Multi-scale models are intrinsically complex, and usually are
modular, whereby the model is divided into units that interact
with each other. Modularity facilitates component reuse and
model integration, including the ability to exchange modules
during, or between, simulations has many advantages (Petersen
et al., 2014), but it depends both upon the validity of each
individual module, as well as the ability to connect modules,
so that they inter-operate appropriately. The promise of
multiscale, modular modeling is that researchers can build
from each other, using prior published models and building
blocks for new, more accurate or more impactful models. For
this vision to be achieved, 1) models must be reproducible, so that
researchers are assured the module will perform as expected, 2)
models must be credible, so that researchers are confident that
reusing a module will be useful and appropriate, 3) models must
be reusable, meaning not only can they reproduce published

results, but also that they can be modified to fit new contexts, and
4) researchers must be able to integrate models with other
models. Figure 1 shows these four steps schematically,
including how each step depends on its predecessors.

The discussions in this group raised many issues that prevent
model integration that start with inability to reproduce models,
which leads to low credibility of those models, which reduces
reuse, which leads to inability to combine and integrate larger
more complex models. Therefore we address many issues at lower
levels that will help reach integration.

The Reproducibility Crisis
Computational biomedical modeling involves mathematical
representation of biological processes to study complex system
behavior and was expected to be less affected by the
reproducibility crisis. After all, computer software should be
deterministic and therefore repeatable if designed well,
compared to biological processes that have a random nature
where experiments are not guaranteed to repeat themselves and
many repetitions are required for the mean to converge.

However, models often fail to be reproducible and the reasons
for the failure and prevalence are not fully understood. In a recent
study (Tiwari et al., 2021), the BioModels group analyzed 455
kinetic models published in 152 peer-reviewed journals, a
collective work of about 1,400 scientists from 49 countries.
Most of these models were manually encoded from scratch to
assess the reproducibility. Their investigation revealed that 49%
of the models could not be reproduced using the information
provided in themanuscripts. With further effort, theymanaged to
reproduce an additional 12% either by empirical correction or
support from authors. The other 37% remained non-reproducible
due to missing parameter values, missing initial concentrations,
inconsistent model structure, or missing information. Among the
corresponding authors they contacted less than 30% responded.
Models from many life science journals failed to be reproducible,
revealing a common problem in the peer-review process. The
group proposed an 8-point reproducibility scorecard to assess
each model and address the reproducibility crisis. A similar study
that reports similar deficiencies is reported in (Kirouac et al.,
2019). The term crisis is not exaggerated and is well justified since
the need to combine models together already exists and building
blocks should be solid and match expectations. The “promise of
modeling” should be fulfilled already, yet we find modelers
consistently unable to reproduce basic steps–thus stagnating
instead of innovating, or even worse–backtracking progress.
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The numbers quoted above cannot be ignored or claimed as being
normal–thus the term crisis is used.

This shows only part of the larger crisis. The ideal we would
like to reach is repeatability and reproducibility of models in
publications and repositories. Repeatability is the ability to repeat
the same experiment with the same system, and reproducibility is
the ability to repeat the same experiment by another scientist
without the same system. The goal here is to have all aspects of the
simulation pipeline (Biological Model, Mathematical Model,
Numerical Methods, Computational Implementation) be
auditable, i.e., they should be fully described (as appropriate
for each component) to enable results to be repeated and
reproduced. However, the modeling community is far from
this ideal. With the diagnosis of this problem, different groups
aim for collaborative efforts to set up best practices.

It is important to acknowledge that the situation is much
worse for other aspects of modeling. For any other aspect, it
would be hard to even conduct such a study to evaluate
reproducibility because the information often is not
systematically cataloged let alone shared in a common format.
Examples include how models were constructed, calibrated, or
validated. Compared to the software industry or finite element
modeling that have reached well established methods of
exchanging information and repositories, such as file exchange
formats/git, computational biological modeling has a long way to
go and in this paper we will try to address some topics to be dealt
with. If we cannot reproduce models, how can those be
considered credible by other modelers, stakeholders, or even
the public?

Credibility of Models
In a larger context, model reproducibility is strongly tied to model
credibility in light of a given purpose. A model without a purpose
is a mere exercise suitable for the classroom and therefore the
prerequisite for any realistic application is the design and testing
of the model with that specific purpose in mind (often called the
“Context of Use”, see below). Often, not only the model
developer, but also others will need to confirm or challenge
the credibility of a model and thus, a model built for a specific
purpose must be at least repeatable and it is highly recommended
it be reproducible. In turn, a model that is not repeatable, cannot
be reproduced, and therefore cannot be deemed credible by
others (who cannot understand the internals, especially if
expert modelers cannot reproduce it). Therefore, the proof of
model repeatability and reproducibility lies with the modeler who
needs to prove the value of the model for a given application.

A modeler should consider the model’s purpose from the start of
development and consider: for what; by who; what is the level of
knowledge and skill of the user; and in what environment. If only the
“for what” is specified, this implies the model can be used by anyone
on any system, which broadens the scope and reduces the chance of
reproducibility and hence reduces credibility by the potential user.

This proof of value becomes of utmost importance if critical
decisions rely on a model. There are, in fact, many cases where
human lives depend (directly or indirectly) on a model.

In most cases, users expect a system based on a model to be
accredited somehow before use. In analogy, a physician will also

not use a medical product, for example a medical device, that is
not approved and tested for the anticipated use–because of the
risk to harm the patient should the product fail or not work
consistently.

This accreditation role many times falls on government
agencies such as the FDA, or NASA. Those agencies have
different approaches towards credibility of models. Guidelines
issued by authorities regulating the use of such models give a
“gold standard” recipe for how a modeler can ensure
reproducibility and establish credibility of a model.

NASA takes modeling seriously. After the space shuttle
Challenger disaster NASA rewrote a standard (NASA, 2016)
and wrote guidelines (NASA, 2019). An interesting component
in the NASA approach was a risk-adjusted approach that
considered both the probability and consequences of a
modeled systems failure, in which the level of risk raises or
lowers the bar for the data needed to accredit a model. This
approach also helps with cost.

FDA regulates the use of medical devices and drugs and also
assesses computational models submitted as part of the market
authorization dossiers. For many years, simulations have been
part of these dossiers. If models can systematically shortcut and
prevent issues related with long and costly clinical trials still needs
proof, but the number of submissions to the FDA under the use of
models has been constantly rising over the past years. The FDA
has released and adopted guidance documents on the reporting
and validation of computational models for regulatory
submissions, (FDA, 2016; FDA, 2003), and actually considered
the NASA standards when creating those (FDA, 2016). In 2018
the American Society of Mechanical Engineers (ASME) issued an
important guidance ASME V&V 40 (ASME, 2018) of how to
assess credibility of computational models of medical devices
through verification and validation (V&V). The guideline is
centered around the definition of the context of use (CoU) of
the model, which is formulated based on the questions of interest
the model will answer. The CoU is then analyzed in terms of the
“model risk” - being the influence the model exerts on a decision
and the potential consequences these decisions might incur.
Commensurate with this model risk, the modeler establishes
the credibility goals, performs verification validation and
uncertainty quantification actions, and then assesses the
outcome of this exercise in order to allow judging of the
acceptability of the model CoU. Key to this guidance is its
overarching nature that also allows adoption in other (e.g.,
drug development) fields irrespective of the model type
(Viceconti et al., 2019; Kuemmel et al., 2020). Very recently,
an FDA guidance draft has been updated taking into account this
standard (FDA 2021b). In the paper by (Viceconti et al., 2019) the
verification, validation and uncertainty quantification (VVUQ)
pipeline is streamlined to different types of models. It is, perhaps,
the closest to score credibility across model types from
mechanistic physics-driven models to machine learning
models. However, it is still short of including very recent
developments such as ensemble models, although it touches
upon the topic.

The FDA understood the potential value of models and
modeled data to make developments of medical devices in an

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

Frontiers in Systems Biology | www.frontiersin.org February 2022 | Volume 2 | Article 8226064

Karr et al. Integration, Reproducibility, Credibility Utility

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


efficient manner. Early in the collaboration with the device
industry about use of model data in trial processes, the FDA
suggested having a “library of “reusable”, “regulatory grade”
models. The FDA passed on the idea but is revisiting the
library idea given models that meet the information guide for
first accreditation. The idea is that the FDA understood the model
and it proved useful, so they can accredit it much faster (cheaper)
for reuse on a very similar application. Time will tell if this
approach works.

In order to advance modeling and simulation fit for regulatory
application, FDA and pharmaceutical companies engage in a
model-informed drug development (MIDD) pilot program
(FDA, 2021a). This pilot program was released in response to
a performance goal agreed to under the sixth iteration of the
Prescription Drug User Fee Act (PDUFA VI), included as part of
the FDA Reauthorization Act of 2017 and advises how particular
MIDD approaches can be used in a specific drug development
program (Zineh, 2019), and how to report those complying with
existing guidelines for regulatory submissions. While for MIDD,
commonly data-driven or phenomenological models are used,
more complex and multiscale models are coming of age and get
submitted to regulators (Viceconti et al., 2021). Data from
relevant MSM tools to refine, reduce or even replace trials,
could provide additional economic incentives to sponsors
(Galluppi et al., 2021). Likewise, however, especially complex
models and MSMs models that do not meet the FDA
requirements for credibility of model data, will fail to be
considered. Guidelines, especially for complex multiscale
models are still lacking and thus adoption of other guidelines
e.g., ASME V&V40 is needed and discussion with regulatory
agencies should be conducted before submission (Musuamba
et al., 2021). Competitors focused on the regulatory side will out-
compete those that do not, or cannot, comply. It will therefore be
necessary to improve available guidance and standardization
efforts with regards to repeatability, reproducibility, and reuse
so that guidance can be adopted cross-community and entity, by
academic and commercial ones alike.

Despite the importance of developing a model with a question
of interest and the respective context of use (CoU) in mind, it is
important to note that the past paradigm used towards model
acceptance/credibility may change in the future. For example
there could be multiple motivations for developing a model,
motivations could change over time, and someone else could
find a new use for a model that was intended for another purpose.
Since some contributors to this manuscript have a less strict
opinion regarding models being developed with a purpose in
mind, we therefore recorded the range of opinions in this
manuscript.

An example of a less strict approach to model credibility are
new ensemble techniques, such as in (Barhak, 2016; Barhak,
2017), which allow judging a model by its performance in a
group of models. This is similar to building teams in sports, where
each individual contributes to a team and the value contributed to
the team can be determined. Ensemble models allow assigning
influence to single models and judging their performance by
validation in different scenarios. Thus assigning a score to the
model and its assumptions compared to others is possible. So the

idea of credibility score may evolve through time and government
agencies should consider this newer approach towards credibility.
However, even if reproducibility and credibility are amenable
there are many issues that prevent reuse of models.

While guidelines and concepts of how to establish credibility
of models–even for critical applications–do exist, the field is still
evolving and lots of work on completing, harmonizing, and
adopting these guidelines still exist. One central question is
what a minimal requirement might be for a model to be
credibly re-usable.

ONGOING DIFFICULTIES IMPEDING THE
UTILITY AND INTEGRATION OF MODELS.

Since there is a large variety of known issues that prevent reuse
and many solutions, we have divided them by topic. For
simplicity Table 1 describes the difficulties and possible solutions:

We also attempted to spread those difficulties as hurdles that
relate to reproducibility, credibility, utility, and integration.
Figure 2 depicts this analogy.

The paper continues elaborating on those topics and expands
explanations hereafter.

Built-In Barriers for Evaluating Model
Credibility
If one considers models that exist currently, what impedes third
parties in assessing their credibility according to “gold standard”
guidelines (discussed before)? Most of them are not designed, too
little or not transparently documented or supported with material
allowing a third party for such credibility assessment.

Models include assumptions that need to be specified. Users
need to know, under what conditions the model is appropriate?
This is a question asked by any modeler. More provenance
information is needed for reuse and composition. Another
investigator who wants to expand a model may need to know
what the assumptions or design decisions were so they know how
to appropriately modify or expand a model. A regulatory body
might want to be able to trace a model back to the data sources
that informed it. Someone who wants to re-train a model for a
different cell type or tissue might want to trace the data back to
know what aspects of the training data need to be replaced.
Enhancing model credibility can be achieved through enhancing
documentation, establishing best practices, and tests.

Examples of information suggested to include in
documentation are the design decisions that motivated a
model, what the model is designed to explain/forecast, and
explanations of data sources that contributed to a model.
Ideally, this would include links to data repositories, indicate
which assumptions were used to interpret the data, consider the
methods/tools/users associated with model calibration, and
evaluate if the model fullfills its intended purpose (Parker
et al., 2002).

In addition, documentation should describe model
limitations. It can be difficult to quickly determine which
populations or scenarios a model can be reasonably applied to.
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This information can usually be teased out by carefully
considering the data that has been used for fitting or
validation, as well as digging through the discussion or
conclusion. However, some doubt often remains because of
the natural tendency to promote one’s work, and the, perhaps
unrealistic, expectation that publishable work be as widely
applicable as possible. If it were standard practice in model
reporting to recommend specific model applications, this
could provide clarity for those implementing or extending
the model.

Beyond design and implementation, best practices should
include reports of tests that describe what was simulated and
the experimental or other data that was used to evaluate the test.
Unlike software test reports which focus on failures, these reports
must also focus on passes because they help establish the domain
under which the model has been established to make trustworthy
predictions. For example, this establishes the domain under
which their clinical use would be supported. When
considering test implementation, some suggestions emphasize
the need for a structured approach with unit-test style tests
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TABLE 1 | Difficulties and possible solutions towards improving model utility.

Difficulty Potential solutions

Models have built-in barriers to evaluate model credibility Better modeling practices, documentation, and tests
Models are written in different languages Common transport specifications such as SBML or CellML, and proper documentation and annotation
Models are hard to locate Archive web sites such as: BioModels, SimTK, IMAGWiki, and the future modeleXchange
Lack of common platforms for executing models and simulations Platforms such as BioSimulators, and runBioSimulations
Modeling requires adaptation towards integration Tools for composing models such as SBML-Comp, and SemGen
Unit standardization Standardization efforts, and machine learning solutions such as ClinicalUnitMapping.com
Data availability and measurement definitions Models that merge human interpretation, and newer measurement devices
Missing annotations in models Adoption of policies such as those COMBINE suggests
Models are not consistently licensed to allow for reuse Abandoning some old school open source licenses and promoting licenses that release to public domain
Different scales and modeling paradigms Standardization effort and centralization tools
Model application and implementation barriers Education of modelers, users, and the public
Stochastic modeling difficulties Development of tools that guarantee repeatability and standards to address stochastic simulations

FIGURE 2 | Sketch of difficulties that impede reproducibility, credibility, utility and integration of models, especially in computational biology. An assignment of these
difficulties to the four different concepts interpreting them as hurdles is attempted.We would like to point out that the sequential assessment model indicated in the graph
is only one of the possibilities a modeler could use to assess the suitability of available models. In the rest of the paper we therefore address each difficulty separately.
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(Sarma et al., 2016; Gerkin et al., 2019) (Lieven et al., 2020) and
continuous evaluation of such tests similar to continuous
integration of software (Meyer, 2014; Krafczyk et al., 2019;
Zhao et al., 2017). To enhance model credibility further, the
model description should include validation tests against
independent data, uncertainty assessments, and peer reviews
(Refsgaard et al., 2005; Jakeman et al., 2006).

Models Are Written in Different Languages
When modelers do use a consistent, declarative language to
describe their models, these models can then be stored and
searched in readily-available repositories. The BioModels
collection is a good example of such a repository for Systems
Biology Markup Language (SBML) (Systems Biology Markup
Language, 2021) models. As another example, the Physiome
Model Repository (PMR) is a collection of CellML models.
Although these repositories are a good step forward toward
finding and reusing published models, by themselves, they are
insufficient.

First, there are often significant differences between modeling
languages–e.g., the CellML language and SBML are almost
opposite in their approach to capturing the information in a
model. Second, even within one modeling language it can be
difficult for an outside user to understand the biological and
mathematical content of a model written by someone else. As
with software engineering, the key to enabling understandability
and reuse of models is to provide unambiguous documentation
about the intended semantics of the model.

One major problem we face for many kinds of models, which
SBML and SBGN (Kitano, 2021) and projects like Biotapestry
address partially for biological networks, is that we lack tools and
formalism for consistently building, annotating, representing,
displaying and manipulating conceptual models of complex
biological phenomena with a spatial component. We lack
standards for all of the key elements that need to be
represented: the objects, the processes (behaviors and
interactions) they participate in, the initial and boundary
conditions and the dynamics and events that govern their
evolution.

In many cases we also lack the scientific understanding of how
to convert these conceptual models into mathematical models
because we lack the “constitutive relations” that are the equivalent
of the standard rate laws for chemical reactions. In this case we
don’t have an agreed upon way to parametrize the submodels and
to define their inputs and outputs.

Another big missing piece is a language to describe the
possible experimental manipulations or perturbations of a
biological system. We have concentrated on building
mathematical and computational descriptions of biology, but
not on the things we can do to them. Without such a
description, classical techniques like perturbation and
sensitivity analysis are much less useful. If we want to achieve
a desired outcome by manipulating a given biological system, we
need to know the constraints in our ability to manipulate that
system. Knowing that we could achieve what we want by
increasing the value of k_xx by 25% is not actionable unless
we can increase k_xx. The lack of orthogonality in biology (any

perturbation of a biological system affects many aspects
simultaneously, is what makes mathematical models so
valuable for understanding (we have clean control
parameters). But it also reduces their utility in designing
experiments or clinical interventions. We need models that
combine the model of the biological system with a model of
the space of possible experiments. The sensitivity of this
combined system is what tells us what is achievable in the lab
or clinic.

Understanding the biological content of a model is critical to
both reuse and reproducibility. If the model itself is
incomprehensible, how can one know what its expected
behavior and performance should be under different
conditions? Semantic annotation is not necessary for simple
repeatability, but if our goals include reproducibility and
reusability, then we must make explicit and clear the biology
and physics that underlie the model. An ideal modeling language
should address this, yet until such a standard language is
established we are faced with a need to integrate among
different languages.

One simple integration example (Another example of
integration and reproduction of a model, 2021) involving
two popular languages, python and MATLAB, demonstrates
the problem of transition between languages. There is no real
translation between languages. No general compiler exists
between multiple languages and human efforts are required.
Fortunately there are standardization efforts among
languages.

The standardization problem is not new and was considered
by modelers a long time ago, resulting in the Systems Biology
Markup Language (SBML) (Systems Biology Markup Language,
2021) that is a very helpful format that can help transport models
between systems. SBML has a track record of success and allows
transporting models between hundreds of systems. However,
despite its popularity, it is not an official standard and the
community decided not to go in that direction (Recent SDO/
COMBINE legal entity issues, 2021). Note that there are many
similar community standardization efforts aggregated in the
biosimulation modeling community known as COMBINE
(Computational Modeling in Biology Network) (COMBINE,
Online). COMBINE includes SBML as well as many other
specifications, yet those communities are still in the process of
standardization and need to organize legally.

Nevertheless, the lack of legal governance does not stop
communities from developing even more tools for result
handling and analysis like PETab (Schmiester et al., 2021),
SED-ML (Waltemath et al., 2011), SESSL (Ewald and
Uhrmacher, 2014), KiSAO (Courtot et al., 2011), SBRML
(Dada et al., 2010), HDF5 (Folk et al., 2011), Vega
(Satyanarayan et al., 2014; Satyanarayan et al., 2017), ggplot2
(Wickham, 2011), and others. Those tools show actual needs by
the community, but these are much less mature and much less
adopted. Their capabilities need to be expanded; they need to be
adopted; software tools need to support them; and there needs to
be infrastructure to share them, such as a repository. Another
piece is that the software tools needed for the above are scattered,
plus it is often unclear what subset of the above they support, and
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tools often become inaccessible. Tools need to be submitted to
registries and the capabilities need to be annotated.

There is a need to coordinate the various standardization
efforts that are needed for the different scales and biology that
need to be involved in multi-scale models. The need for multiple
standards may be recognized, yet the need to coordinate them to
be able to compose multiscale models has received less attention.

Models Are Hard to Locate
Many times model location is a difficult task since models are
published in different sources. Despite many repositories
available there are many ways models are published including
journal papers, conferences, preprint services such as BioArxiv,
web sites, and code repositories such as GitHub. In some good
cases, there are model archive/linking web sites such as
BioModels (BioModels, 2021), SimTK (SimTK, 2021),
IMAGWiki (IMAGWiki, 2021), and in the future
modeleXchange (Malik-Sheriff et al., 2020). However,
currently there is no one aggregator that helps locate all
models and many times community members cannot agree on
location and attempt to create more repositories rather than
centralize efforts.

Moreover, simulation workflows are even harder to find. For
example, BioModels primarily focuses on models. There has been
much less focus on publishing the construction/calibration of
models, simulations, their results, analyses of their results, or
entire workflows for the above. Sharing all of this needs
embracing other repositories and developing some new ones.

We recommend that modelers use those repositories since we
are at a stage in evolution of modeling where model composition
is of interest and availability of modeling components is
important. We ask that modelers consider from development
to start permissive Intellectual Property for the versions published
in those repositories to increase accessibility.

Lack of Common Platforms for Executing
Models and Simulations
Even if models can be located, their simulation is a different issue.
Due to the existence of many partially supported standardization
efforts in this field, it is often difficult to know what tool needs to
be used with which model. It can also be difficult to find that tool,
download it, install it, learn it, and to use it, especially for large
simulations. These issues keep modelers in silos.

Even formats associated with standardization efforts have
difficulties. It is not possible, for example, to load a MATLAB/
SimBiology SBML L2V4 model into COPASI and someone
adhering to latest standards implementing L3V2 SBML
support for import will find difficulties in importing models.
Moreover, it is difficult to find a common platform that supports
all SBML versions. This version compatibility gap is not
uncommon. However, since biological models take a long time
to develop and represent phenomena that will persist for long
terms, it is important to have long term stability and support with
newer platforms and older models.

If the goal is for non-modelers to be able to interact with
models (e.g., to analyze data, to contribute data toward a

modeling project, or to apply a model for medicine), it needs
to be much easier to find and use these tools. Two initiatives that
are trying to address this are BioSimulators (BioSimulators, 2021)
and runBioSimulations (Shaikh et al., 2021).

Modeling Requires Adaptation Towards
Integration
Many times the models as published need some level of
manipulation to plug into another model. For example in
(Castiglione et al., 2021) the survival function needs
adaptation to transform it as can be seen from the public
discussion in (About using a multi-scale mortality model in
the ensemble, Online). Note that all those models need to be
scaled to the same units and scales. Another example is in (Ke
et al., 2020) where infectiousness is proportional to max
infectiousness while the models in (Hart et al., 2021) are
density models. In the model in (Castiglione et al., 2021) the
time scale was originally 8 h and it needed to change to daily
probability to merge into another model in (COVID19Models/
COVID19_Mortality_Castiglione at main, 2021), which required
scaling of the probability function. Those examples are relatively
simple integrations and in more complex integrations the
adaptation effort is more significant and many more
obstacles exist.

One obstacle is lack of standards for describing composite
models and software tools for merging models. One specification
is SBML-comp, but it is cumbersome and few tools support it.
Another tool is SemGen (Neal et al., 2019a), but it focuses on
finding mappings between similar models. To the point here,
SBML-comp is designed to compose models that were not
intended to be composed. Instead, composition needs to be
deeply ingrained into the entire community so that models are
anticipating the needs of composition from the beginning.

Note that adaptation towards standardization also requires
matching terminology, and especially matching of units of
measure, as well as proper documentation which we will
address in the next topics.

Unit Standardization
Unfortunately, units of measure are not yet standardized, an open
problem despite many attempts to resolve it by multiple
standardization bodies such as IEEE, CDCIC, and NIST. One
indication of the severity of the problem is that a Github search
for “unit conversion” shows over a thousand results. Another
good example of the severity of the problem is ClincialTrials.Gov
that aggregates quantitative data from around the world and this
database shows over 24 K different units of measure (Barhak and
Schertz, 2019). One attempt at solving this standardization issue
using machine learning is ClinicalUnitMapping.com, yet this
project requires more effort.

Unit mismatches become particularly problematic when
trying to integrate models across different spatial or time
scales. For example, intracellular processes occur on
micrometer spatial scales and seconds to minutes time scales.
An in-host, tissue-level model of infection processes operates at
millimeter to centimeter distances and hour to day time scales.
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When trying to integrate the two into a single multiscale model,
care must be taken to ensure appropriate conversion of units
when transferring output of one model as input to the other. This
broad range of spatial and temporal scales can also cause
computational problems requiring development of new
algorithms to make computation more efficient across multiple
scales (Jung and Sugita, 2017). While it is impossible to avoid
having to convert units, we are advocating for clarity in the use of
units. Sometimes models are used (and published) without
specifying the units used for simulation parameters—this is a
practice that needs to be corrected. Moreover, tools such as
ClinicalUnitMapping.com can help overcome standardization
difficulties in the future with more development. Once
mapping to standardized units is easier, then simulation
parameters can be converted appropriately when different
scales or units are needed.

Lack of standard units for measurement of infectious virions is
particularly problematic when trying to develop stochastic viral
models. Stochastic models often require that we track individual
infectious viral particles, yet it is not clear how the typical viral
titer units of TCID50/ml and pfu/ml convert to individual virions.
Two attempts have been made to estimate the conversion factor,
both for influenza, resulting in estimates of 1 TCID50/ml of nasal
wash corresponding to 102–105 (Handel et al., 2007) or 3 × 104-
3x105 (Perelson et al., 2012) virions at the site of infection. Such
order of magnitude uncertainty in unit conversion makes it
difficult to develop accurate model representations of viral
infections. We are not advocating for a standard conversion
factor, since the conversion factor likely depends not only on
the specific virus, but also conditions such as temperature and
pH, which are known to affect viral infectivity (Rowell and
Dobrovolny, 2020; Heumann et al., 2021). Rather, we are
advocating for development of new viral measurement
techniques that can more reliably quantify the number of
infectious viruses present in a sample.

Data Availability and Measurement
Definitions
When attempting to integrate models, the phenomenon being
reproduced by the models or the data they are based on might not
be the same. This is especially true when model definitions evolve
or can change in many ways. Examples include International
Classification of disease (ICD) codes (Wikipedia, 2021a) that
went through multiple versions through the years, or even a
disease definition that has evolved for sepsis (Gary et al., 2021).
Even outcomes of clinical trials change if counted using different
definitions as seen in (clinicaltrials.gov/NCT00379769 -
GlaxoSmithKline, 2017). Those definitions can hinder
connecting different models together. Possible solutions are
machine learning techniques that can transfer interpretation or
modeling techniques that merge human interpretation from
multiple experts into the modeling process (Barhak, 2020a).

Another issue specific to models dealing with viruses may
seem like the lack of unit standardization for measurement of
virus. However, it is a measurement definition issue. Infectious
virus concentrations are measured using TCID50/ml (50% tissue

culture infectious dose) or in pfu/ml (plaque forming units), both
of which depend on specific experimental conditions such as
temperature, humidity, and measurement time. Studies have
shown that even a lab using identical experimental conditions
cannot reproduce the same measured experimental values of
virus leading to differences in estimated parameters for models
(Paradis et al., 2015). There is also an underlying assumption for
both units of measurement that an observed plaque was initiated
by a single infectious virion, which has never been clearly proven
to be true. More recently, non-infectious virus particle
concentrations are being measured using PCR. In this
technique, the number of segments of a particular piece of
RNA are measured. While this unit is more tangible and
consistent than the infectious viral titer units, viral kinetics
models often consider only infectious virions. Although non-
infectious viruses are starting to be incorporated into models, the
relationship between infectious and non-infectious virions
changes over the course of an infection (Petrie et al., 2013),
making it difficult to use these measurements to get at the
underlying infectious virus dynamics. New measurement
techniques and strategies for more direct measurement of
infectious virions are being developed (Cresta et al., 2021).

Data availability to rationalize calibration and validation of
models is crucial but often not possible because of data sharing
policy and privacy (especially for individual human data).
Moreover, undisclosed data from industry sponsored clinical
trials used in model building and validation generally excludes
many useful models from any assessment by the scientific
community. This is a difficult problem but there may exist
some partial solutions. Synthetic data that is statistically
similar to real-world data without containing information
about any real individual can be shared. While the similarity
can only be evaluated with access to the original data as in (Stack
et al., 2013), because it can be shared, it can be used for calibration
and validation of other models (Barhak, 2017; Ajelle et al., 2018;
Liu et al., 2018; Wang et al., 2019). There is a risk of error using
synthetic data in this way since, though it may have been similar
in some respects to the original data, it might be different in some
other respect that matters for a model different from that used for
validation. For validation of model results against individual data
that cannot be shared, it is conceivable that services could be
deployed to query the data. Differential privacy (Dwork 2008;
Garfinkel and Leclerc, 2020) to establish a privacy budget for such
a service providing an information theoretic bound on howmuch
information is allowed to be revealed in response to queries. This
budget can be set to whatever is considered ethically and
administratively acceptable. More research is needed to adapt
this idea to suit model making needs.

Even data that are publicly available has limitations. In the case
of within-host viral kinetics models, sampling of viral loads and
immune responses is often not done frequently enough or long
enough to ensure parameter identifiability (Miao et al., 2011).
During the recent SARS-CoV-2 pandemic, several attempts were
made to parameterize within-host viral kinetics models using
viral loads measured from patients, but these measurements were
often collected only after a patient was hospitalized, so the crucial
viral growth phase is missing (Hernandez-Vargas and Velasco-
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Hernandez., 2020; Wang et al., 2020). Additionally, viral loads
were measured via nasal swab, though it is not clear that the viral
load in the nose is correlated to the viral load in the respiratory
tract, which is the infection location simulated in the models.
Other viruses can also infect internal organs that are difficult to
access for frequent measurements without invasive procedures.
Immune responses are often measured using levels in the blood,
which is typically not the site of infection and often not the
location of viral load measurements either. Since models are
attempting to replicate virus and immune dynamics at the site of
infection, these data collection limitations make it difficult to
collect the data needed to accurately parameterize such models
for humans.

A further methodological issue with some of the available
in vitro and in vivo experimental data is that it often does not
represent the infection time course in a single individual or single
experimental well. Clinical trial data is often presented asmedians
or means taken over all patients. A recent study of influenza
infections showed that parameter estimates based on fits of
models to a single median viral titer curve do not match
estimated parameter values based on fits to individual patients
(Hooker and Ganusov, 2021). This also masks patient-to-patient
variability in infection. Pre-clinical animal studies and in vitro
studies can be even worse as animals are often sacrificed and
infections in individual wells are stopped to make measurements
at each time point. In this case, experimental data consist of an
average of measurements from several animals/wells at each time
point that differ from the set of animals/wells at other time points.

Missing Annotations in Models
In biosimulation models, documentation about the intended
semantics of the model is captured by annotations - additional
information that describes the model, and the biological entities
included in that model. Further, these annotations can leverage
the rich resources of bio-ontologies–consistent nomenclatures
and terminologies that describe the biological world in great
detail.

COMBINE has recognized these challenges for
understandability and reuse of models and is working hard to
disseminate best practices around semantic annotation.
COMBINE consensus around annotation is described in (Neal
et al., 2019b). This paper describes some key tenants for improved
semantic annotation: First, these annotations should be written
using a standard format, and one that is independent of modeling
languages. Thus, COMBINE recommends RDF as a simple triple-
based representation to connect model elements to annotations
and knowledge resources (e.g., ontologies). Next, COMBINE
recommends that annotations should be stored externally from
the source code of the model. Obviously, the annotations should
be linked to elements within the model source code, but in order
to be language independent, they should be stored separately.
Finally, COMBINE recommends that modelers and model
building communities provide policies and rationale for
choosing which knowledge resources to use for which types of
annotations. Otherwise, the same biological entity may look
different if different modelers annotate the entity against
different bioontologies.

Annotations can be useful for multiple tasks such as:
annotation of semantic meaning where biology or real-world
relevance is explained, annotation of provenance where the
origins of the model and its creators are referenced, and
annotation of verification indicating tests the model should
undertake and pass. However, there is a lack of sufficient
annotation about the components of models. This is
particularly because modelers choose not to provide
annotation and because tools for describing the semantic
meaning of components are just starting to emerge. For
example, for biochemical models there’s HELM and BpForms.
The lack of such annotationmakes it hard to determine the points
of overlap between models. In addition, there is a lack of
annotation about data sources and assumptions which makes
it hard to determine whether models are compatible or what
needs to be done to make them compatible. For example, do two
models represent the same cell type, tissue, or gender? Hopefully
policies will be adopted to resolve this issue.

Models Are Not Consistently Licensed in an
Easy Way That Allows Reuse
Different institutions have different approaches towards licensing, as
can be seen from this discussion (Licensing issues, 2021). Therefore,
model creators may not be aware of the implications of licensing
many times when they publish their models. Moreover, some
licenses are incompatible with each other or other forms of
Intellectual Property (IP) such as patents (Wikipedia, 2021b).
Even open source licenses are quite restricted since they are
based on copyright laws, which give the owner rights to restrict
usage (Barhak, 2020b). In this sense open source licenses resemble
patents and in some cases are more restrictive since patents become
public domain quicker. Moreover, community members take
different sides with regards to licensing issues as can be seen in
this discussion (Issues with regard to Call for transparency of
COVID-19 models, 2021). Specifically, one license that will make
reuse much easier is Creative Commons Zero (CC0) (CC0 Creative
Commons, 2021). This license uses the term “No rights reserved”
and makes it easier for models and text to be reused with less
restrictions. In fact model repositories such as BioModels require
releasing the models uploaded there under CC0 (Malik-Sheriff et al.,
2020). However, CC0 license has not been adopted by some
(Wikipedia, 2021c). To eliminate the licensing problem, modeling
communities will have to abandon old school open source licenses
that are based on copyright and create conflicts and recommend
releasing models to the public domain using licenses such as CC0.

We therefore recommend that models and their associated
data should be published under permissive terms. For
maximizing reproducibility and integration, we suggest that
the most permissive license possible should be chosen. In that
regard the CC0 license would be a good choice, effectively waiving
interests of the creator in their works and therefore emulating the
public domain in jurisdictions where this is necessary.

Different Scales and Modeling Paradigms
Models are operating on different spatial scales (population or
individual) with different modeling paradigms (continuous vs
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discrete). A tissue could be modeled as a continuum leading to
Partial Differential Equations (PDEs) or as a collection of
individual interacting cells leading to an agent-based model.
Specification of these two models would probably require
different languages.

The fact that models capture different scales or that they don’t
consistently capture any single scale creates challenges for
composition. One opinion is that the challenge is that the scale
of a model is not clearly annotated. To compose models, this forces
the composing investigator to try to figure out the scales of each
model and how to mesh them. Typically this is combined with lack
of annotation of units. When developing a standard for specifying
models, developers will probably need standards specific for each
modelling approach. One possibility is that a family of specification
standards may be created. The need for different formats for
different domains and scales will probably create the need for a
central place where, especially non-modelers, can find information
about these various future standards and which tools support them.
Ideally, there would also be a central place where these tools can be
obtained and executed so that even non-modelers can easily explore
models without having to figure out what software is needed, install
it, etc. However, it is still unclear what common practices might
facilitate composition across scales and how the various component
standards should be architected to facilitate integration.

Model Application and Implementation
Barriers
Models are difficult to be used by a community or government.
Scientific, regulation, and social communities have different sets
of models and different understanding and standards in models.
It is hard to convince and establish a common popular model
widely acceptable by a wide range of communities and even
adopted by the government. The long term validation and
approval process may delay the cycle from model application
to implementation.

Many models can increase their utility to the scientific
community if their applicability and implementation is easy.
These aspects can be improved by means of several features.
One crucial feature is the reproducibility of the model since
usually this is necessary before the model can be applied by the
scientific community. The likelihood that a model is applied to
different problems increases if their results are reproducible. The
reproducibility is difficult to test if there are implementation
barriers. Some of these barriers have been pointed out in this
article. Thus, we can infer that implementation issues of the
models affect the reproducibility of the models and therefore a
broad utility of the models to the scientific community.

Currently many models are difficult to implement and
therefore unable to make a real impact. Many of the existing
models that are used by decision makers are used because those
were implementable. More sophisticated models are many times
not used due to a need for proper tools or proper expertise.
Therefore, many good ideas remain unused due to
implementation difficulties. The solution to this problem is
long term and requires education of developers, users, and the
public.

Stochastic Modeling Difficulties
Biological systems are exceptionally complex, involving a
multitude of interactions among a large number of
components at different spatial and temporal scales. Over the
years, much work has been performed wherein deterministic
models have been developed to understand dynamics from the
cellular level to the population level (Murray, 2002). Although
these works have provided much insight, it is known that the
mean-field dynamics of these deterministic models do not always
capture important phenomena (Forgoston andMoore, 2018). For
example, disease population models often have a stable endemic
state for reproduction numbers greater than one, and therefore it
is not possible for the disease to go extinct in the models. This is in
direct contrast to the local extinctions of disease that occur all the
time in the real-world (Assaf and Meerson, 2010; Bauver et al.,
2016), (Doering et al., 2005; Dykman et al., 2008; Ovaskainen, and
Meerson, 2010; Forgoston et al., 2011; Schwartz et al., 2011;
Nieddu et al., 2017; Billings and Forgoston, 2018). Similarly, at
the within-host level, new infections may or may not establish.
This phenomenon can be captured by stochastic models, but is
not realised by a deterministic model with a single set of model
parameters. Furthermore, deterministic models do not account
for the random interactions of cells or individuals, nor do they
account for the changes in the model’s rates which are related to
random events.

To properly model real-world multiscale dynamics, it is often
necessary to use stochastic approaches that allow one to make
quantitative, statistical predictions, while simultaneously
providing qualitative descriptions of system dynamics. The
ability to generate stochastic simulations that provide
quantitative statistics for the emergence of new dynamics is
increasing with advances in computational power. However,
the inclusion of stochasticity leads to a variety of issues related
to reproducibility. One concern is associated with noise-induced
transitions (Assaf and Meerson, 2010; Forgoston and Moore,
2018) or stochastic resonance in which the deterministic system is
qualitatively different from the stochastic system. The output of a
stochastic model is a distribution or time-series of distributions.
In particular, it is possible to have different outcomes for the same
model or set of parameter values (e.g., a multimodal equilibrium
distribution). In this case, one must use more sophisticated
techniques such as Kullback-Leibler divergence or
Wasserstein’s distance to make quantitative comparisons with
data or other models. Moreover, while it may be possible to
compare distributions generated by different stochastic models, it
is often not possible to generate identical, individual realisations.

Stochastic models are critically important. Indeed, unlike
deterministic models, stochastic models give rise to
probabilistic predictions based on ensembles of realisations.
However, in general, these types of models present difficulties
that include: 1) how one validates a stochastic simulation; and 2)
how one can ensure the repeatability of a stochastic simulation. It
is worth noting that the latter issue becomes more problematic
when software libraries that support modern high-performance
computation (including standard parallel computation as well as
GPU computation meant to accelerate simulation), cannot
guarantee deterministic reproducibility (DOC, 2021). Potential
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solutions include the development of tools that guarantee
repeatability such as ways to set and record pseudo-random
number generator seeds as used by the MIcro Simulation Tool
(MIST) (Barhak, 2013) and developing standards to address
stochastic simulations.

Open Discussion
During the work on the paper, a few other items were raised that
were not resolved and we assembled those here so those can be
addressed in a future version. Some of those issues are visible, yet
out of reach, at least for this group of authors and the group
invites correspondence on resolving the issues we list below.

How existing Multi-Scale frameworks could be made more
transparent with respect to the models they encode and
potentially more interoperable. How are most multiscale
models encoded? Do they use general modeling frameworks
that have been developed for this purpose or do they rely on
custom-built code? What general purpose multiscale frameworks
exist and what types of model integration and linking do they
support? Are there opportunities to develop standards that would
make such models more reproducible and understandable? What
intermediate steps might be possible? For example, some of these
frameworks support integration of SBML models (or models
encoded in other somewhat standardized languages). Is it
beneficial to leverage existing standardization efforts and to
develop new ones for the description and implementation of
MSM’s going forward? Right now, it is a bit of a wild west where
these models are being developed with submodels as generic
pieces of code in general purpose languages like C++ and Python
that rely only on unstructured comments for documentation.

It is still unclear how various component standards should be
architected to facilitate integration. Many of the solutions
discussed will require dedicated tools and standards and there
will be many of those. It is unclear how distributed and
decentralized components will be governed. A resource such
as modeleXchange (Honorato-Zimmer et al., 2018) may help
investigators navigate this landscape for models, and similar tools
may be needed to navigate tools and standards.

There is no commonmethodology on how to deal with the gap
between model parameters, data collection, and standards. This
topic should be discussed in the future in light of a potential
solution of standardized model development explanation.
However, standards have to evolve to handle this issue in
proper standard organizations.

The COMBINE (COMBINE - Coordinating standards for
modeling in biology, 2021) organization has been helpful to start
the standardization process. However, it is not a Standards
Development Organization (SDO) and its members rejected
joining SISO, which was an established SDO. Therefore the
products of this work may not be widely accepted unless the
organization matures and adopts a legal entity standing with all
regulations involved. However, will the community behind this
organizationmature enough to adopt legal bindings and regulations?

Common formats for results and visualizations still have not
been established despite importance. When models produce
results during simulation those should be archived and
visualized somehow to help user interactions. A common

format to represent results and how to generate graphics to
represent will help with credibility and integration efforts.

For models to mature, there is a need to establish testing
paradigms. Testing included all general software development
good testing practices such as verification of calculation code,
regression testing, plus model validation and usability testing.
One of the authors recommended that a future model testing
practices paper be developed. Another voice mentioned that the
ensemble modeling approach includes tests within it. Yet the
group reached no conclusion.

Barriers preventing validation reduce credibility and therefore
have a negative impact on model credibility, which prevents reuse.
One barrier ismodel validation at different scales:Models at different
scales from molecular to population scale are usually validated at
different standard and testing samples. Cross-scale validation is very
difficult since there are multiple factors involved that influence the
outcome of different scales. Another barrier is model validation for
practical use cases: Real world prediction from the developed model
is challenging because of the complexity of the pathogen spreading
process. The real spreading process always has a lot of random social
and physiological variables that are hard to be included in anymodel.
With more advanced models and availability of more data, practical
forecasts will get more accurate.

Another, difficult topic is spatial models. It seems we are pretty
much at the beginning in terms of defining spatial models. We
don’t have a quantitative language to specify cell shapes, cell
behaviors, or tissue architecture. In many cases we don’t even
have a qualitative language to do this.

Bioscience modelers are not alone dealing with utility and
reuse related issues. A 2016 report on complex systems
engineering challenges (Fujimoto et al., 2017) identified other
non-technical barriers in the form of social, behavioral and
programmatic barriers that were not addressed among the
technical issues in this paper.

These and many other topics may be issues for the group to
discuss in the future and readers are welcome to join the discussion.

CONCLUSION

This manuscript discussed the reproducibility crisis in biological
computational models. Many issues and difficulties and barriers
have been presented. Nevertheless, some efforts towards solutions
already are in progress and have been mentioned. We can
categorize those challenges to scientific problems, and cultural
and community based challenges.

Examples of scientific problems include the need to build good
model integration environments, and to establish how to
integrate models across paradigms. We also need to resolve
many of the stochastic modeling challenges.

Examples of cultural and community barriers include
education towards standardization of units, education towards
proper annotation of models. Good tools may help with
education by helping do those tasks semi automatically.

It is expected that many solutions will have both scientific and
cultural aspects. The list of issues should not discourage modelers
from developingmodels. Insteadmodelers should view this list as a
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reference of issues to be solved in the future and issues to avoid. The
first step in solving the problem is admitting it exists. With this
paper the authors recognize the challenges and admit the current
state of modeling needs fixing. Hopefully fixing those issues,
starting with reproducibility, will increase model credibility and
will facilitate reuse and later integration of models. The long term
goal of this group is improvingmodels to achieve better human and
machine comprehension of biological processes.
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